Go to top

Nieuwsbrief

Schrijf je hier in voor de wekelijkse Nieuwsbrief en blijf op de hoogte van alle niet te missen ontwikkelingen in de Aluminium Roestvast en Staal branche!

Velden met een * zijn verplicht

AlgemeenRSS

  • Aluminium-lagerlegeringen

    De ruimschootse beschikbaarheid van aluminium en zijn betrekkelijk stabiele prijs vormden aanleiding tot een voortdurende ontwikkeling in zijn gebruik voor gewone lagers. Aluminium in de vorm van een enkel metaal, als binaire en ternaire legering, kan nu worden gebruikt in hetzelfde belastinggebied als babbitts, koper-loodlegeringen en hoog-loodhoudende tinbronzen. Daar komt nog bij de uitstekende corrosievastheid van aluminium dat de laatste jaren een steeds belangrijker bron van overweging vormt bij de keuze van een materiaal. Een en ander heeft geleid tot verspreid gebruik van aluminiumlegeringen voor lagers in automobielen en heeft daarmee de koper-loodlegeringen en loodhoudende bronzen verdrongen.

    Lees verder

  • Aluminium algemeen deel 1; aluminium, aluminiumlegeringen, aluminiumlagen, aluminiumoxidelagen

    De beproeving van aluminium en aluminiumlegeringen vindt grotendeels op dezelfde manier plaats als bij andere non-ferrolegeringen en staal.

    Lees verder

  • Aluminium algemeen deel 2; bewerken, eloxeren, extruderen

    De beproeving van aluminium en aluminiumlegeringen vindt grotendeels op dezelfde manier plaats als bij andere non-ferrolegeringen en staal.

    Lees verder

  • Aluminium algemeen deel 3; gietbaarheid, guinier-preston-zones, kneedlegeringen

    De beproeving van aluminium en aluminiumlegeringen vindt grotendeels op dezelfde manier plaats als bij andere non-ferrolegeringen en staal.

    Lees verder

  • Aluminium algemeen deel 4; korrelverfijningsmiddelen, lassen van aluminium, legeringsaanduidingen volgens AA, non-ferro gietlegeringen

    De beproeving van aluminium en aluminiumlegeringen vindt grotendeels op dezelfde manier plaats als bij andere non-ferrolegeringen en staal.

    Lees verder

  • Aluminium algemeen deel 5; oververoudering, precipitatieharding, slinkholtes, spuitgieten

    De beproeving van aluminium en aluminiumlegeringen vindt grotendeels op dezelfde manier plaats als bij andere non-ferrolegeringen en staal.

    Lees verder

  • Aluminium algemeen deel 6; Uitscheiding, uitscheidingsharding, veroudering, vezelversterkt aluminium, mechanische eigenschappen

    De beproeving van aluminium en aluminiumlegeringen vindt grotendeels op dezelfde manier plaats als bij andere non-ferrolegeringen en staal.

    Lees verder

  • Chroom-6 in de metaalindustrie wat is Chroom-6?

    Dat chroom-6 (hexavalent chroom) giftig is en kankerverwekkend is, is nu wijdverbreid bekend. Door wet en regelgeving komen er steeds meer beperkingen in toepassing van chroom-6 bij de oppervlaktebehandeling van metalen. Chroom-6 staat voor hexavalent chroom, ook bekend als het chroom ion Cr 6+. Chroom-6 is met name giftig als het verstuift in de atmosfeer en als mensen het dan inademen. Bij defensie is dit verstuiven berucht omdat het op grote schaal gebeurde bij het schuren aan de vliegtuigen en het rijdend en varend materieel en bij het spuiten hiervan.

    Lees verder

  • Mechanische Eigenschappen van aluminium Deel 1

    De basisvereiste voor een legering of deze in staat is tot verouderingsharding is een afname van de oplosbaarheid in de vaste toestand van een of meer van de legeringselementen bij dalende temperatuur.

    Lees verder

  • Mechanische Eigenschappen van aluminium Deel 2

    Hoewel vroege pogingen ter verklaring van de hardingsmechanismen in verouderingsgeharde legeringen beperkt moesten blijven vanwege gebrek aan experimentele gegevens, zijn er toch twee belangrijke postulaten geformuleerd. De ene was dat harding, of liever de gestegen weerstand van een legering tegen vervorming, het resultaat was van de invloed van precipitaatdeeltjes op het afschuiven van kristalvlakken. De ander was dat maximum harding samenhing met een kritische deeltjesgrootte.

    Lees verder

  • Mechanische Eigenschappen van aluminium Deel 3

    Vroeg werk met betrekking tot de hoogvastere aluminiumlegeringen was voornamelijk gericht op het maximaliseren van de treksterkte-eigenschappen van materiaal voor vliegtuigconstructies. Daarna verschoof de nadruk in de ontwikkeling van legeringen weg van de treksterkte als allesoverheersend kenmerk en werd er meer aandacht geschonken aan het gedrag van legeringen onder de grote verscheidenheid aan omstandigheden die zich bij het dagelijks gebruik voordoen

    Lees verder

  • Mechanische Eigenschappen van aluminium Deel 4

    Het is bekend dat, in tegenstelling tot staal, de toename die wordt bereikt in de treksterkte van de meeste non-ferrolegeringen niet gepaard gaat met evenredige verbetering van de vermoeiingseigenschappen. Dit verschijnsel wordt geïllustreerd door afbeelding 13, waarop het verband is te zien tussen de vermoeiingssterktegrens (5 x 108 wisselingen) en de treksterkte voor verschillende legeringen.

    Lees verder

  • Wat is aluminium? Deel 1

    Een overzicht van betreffende mogelijkheden en onmogelijkheden van aluminiumgebruik, be- en verwerking, en bescherming waarbij bepaalde technische aspecten voortdurend aan toepassingavoorbeelden gekoppeld zullen worden.

    Lees verder

  • Wat is aluminium? Deel 2

    In dit deel zullen de verschillende gietmethoden en gietlegeringen behandeld worden. De voornaamste gietprocessen: zand-, kokille- en spuitgieten.

    Lees verder

  • Wat is aluminium? Deel 3

    Aluminiumlegeringen welke goed plastisch vervormbaar zijn, zijn vaak slecht verspaanbaar. Een goed vervormbare aluminiumlegering is zacht, zachte legeringen zijn vanwege het 'smerende' karakter moeilijk te verspanen.

    Lees verder

  • Wat is aluminium? Deel 4

    Aluminium dankt zijn populariteit voor een groot gedeelte aan de corrosiebestendigheid. Vooral tegen weersinvloeden is het metaal goed bestand, wat in de bouw tientallen toepassingen heeft opgeleverd.

    Lees verder

  • Wat is aluminium? Deel 5

    Verschillende technieken om aluminium met aluminium of met andere materialen te verbinden. Deze verbindingstechnieken zijn in vier groepen in te delen, namelijk: 1. mechanische verbindingen (b.v. schroeven, felsverbindingen, popnagelen en klinken) 2. lassen 3. solderen 4. lijmen.

    Lees verder